当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。
Lambert wants to carry several kinds of items with a knapsack. Items of each kind have integral size and infinite supply. The knapsack also has an integral capacity. Due to some esoteric reasons, an item of any kind can be divided evenly into a fixed number of identical parts. The resulting parts can again be divided, and the process of even division can go on endlessly. Given n kinds of items, can the capacity of the knapsack be fulfilled?
The input contains multiple test cases. Each test case begins with a line containing three positive integers n, x and k (n ≤ 1000, k ≥ 2), where x is the capacity of the knapsack, and k means each division divides an item or a divided part into k identical smaller parts. Then comes a line containing n positive integers, the sizes of different kinds of items.
For each test case, output one line containing “Yes” if the knapsack can be fulfilled or “No” otherwise.
2 3 5 4 11 3 16 2 3 6 9
Yes No
时间上限 | 内存上限 |
1000 | 131072 |