当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。
Assume you have a square of size n that is divided into n × n positions just as a checkerboard. Two positions (x1, y1) and (x2, y2), where 1 ≤ x1, y1, x2, y2 ≤ n, are called “independent” if they occupy different rows and different columns, that is, x1 ≠ x2 and y1 ≠ y2. More generally, n positions are called independent if they are pairwise independent. It follows that there are n! different ways to choose n independent positions.
Assume further that a number is written in each position of such an n × n square. This square is called “homogeneous” if the sum of the numbers written in n independent positions is the same, no matter how the positions are chosen. Write a program to determine if a given square is homogeneous!
The input contains several test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines contains n numbers, separated by exactly one space character. Each number is an integer from the interval [−1000000, 1000000].
The last test case is followed by a zero.
For each test case output whether the specified square is homogeneous or not. Adhere to the format shown in the sample output.
2 1 2 3 4 3 1 3 4 8 6 -2 -3 4 0 0
homogeneous not homogeneous
时间上限 | 内存上限 |
3000 | 65536 |