You are the owner of a railway system between n cities, numbered by integers from 1 to n. Each train travels from the start station to the end station according to a very specific timetable (always on time), not stopping anywhere between. On each station a departure timetable is available. Unfortunately each timetable contains only direct connections. A passenger that wants to travel from city p to city q is not limited to direct connections however -- he or she can change trains. Each change takes zero time, but a passenger cannot change from one train to the other if it departs before the first one arrives. People would like to have a timetable of all optimal connections. A connection departing from city p at A o'clock and arriving in city q at B o'clock is called optimal if there is no connection that begins in p not sooner than at A and ends in q not later than at B. We are only interested in connections that can be completed during same day.
Write a program that:
reads the number n and departure timetable for each of n cities from the standard input,
creates a timetable of optimal connections from city 1 to city n,
writes the answer to the standard output.