Nanjing University of Science and Technology is celebrating its 60th anniversary. In order to make room for student activities, to make the university a more pleasant place for learning, and to beautify the campus, the college administrator decided to start construction on an open space.
The designers measured the open space and come to a conclusion that the open space is a rectangle with a length of n meters and a width of m meters. Then they split the open space into n x m squares. To make it more beautiful, the designer decides to cover the open space with 1 x 1 bricks and 1 x 2 bricks, according to the following rules:
1. All the bricks can be placed horizontally or vertically
2. The vertexes of the bricks should be placed on integer lattice points
3. The number of 1 x 1 bricks shouldn’t be less than C or more than D. The number of 1 x 2 bricks is unlimited.
4. Some squares have a flowerbed on it, so it should not be covered by any brick. (We use 0 to represent a square with flowerbet and 1 to represent other squares)
Now the designers want to know how many ways are there to cover the open space, meeting the above requirements.