Consider a binary operation
__poj_jax_start__\odot__poj_jax_end__ defined on digits 0 to 9.
__poj_jax_start__\odot__poj_jax_end__: {0, 1, ..., 9} × {0, 1, ..., 9}
__poj_jax_start__\to__poj_jax_end__ {0, 1, ..., 9}, such that 0
__poj_jax_start__\odot__poj_jax_end__ 0 = 0.
A binary operation
__poj_jax_start__\otimes__poj_jax_end__ is a generalization of
__poj_jax_start__\odot__poj_jax_end__ to the set of non-negative integers,
__poj_jax_start__\otimes__poj_jax_end__:
__poj_jax_start__\mathbb{Z}__poj_jax_end__0+ ×
__poj_jax_start__\mathbb{Z}__poj_jax_end__0+ __poj_jax_start__\to__poj_jax_end__ __poj_jax_start__\mathbb{Z}__poj_jax_end__0+. The result of a
__poj_jax_start__\otimes__poj_jax_end__ b is defined in the following way: if one of the numbers a and b has fewer digits than the other in decimal notation, then append leading zeroes to it, so that the numbers are of the same length;
then apply the operation
__poj_jax_start__\odot__poj_jax_end__ digit-wise to the corresponding digits of a and b.
Let us define
__poj_jax_start__\otimes__poj_jax_end__ to be left-associative, that is, a
__poj_jax_start__\otimes__poj_jax_end__ b
__poj_jax_start__\otimes__poj_jax_end__ c is to be interpreted as (a
__poj_jax_start__\otimes__poj_jax_end__ b)
__poj_jax_start__\otimes__poj_jax_end__ c.
Given a binary operation
__poj_jax_start__\odot__poj_jax_end__ and two non-negative integers a and b, calculate the value of a
__poj_jax_start__\otimes__poj_jax_end__ (a + 1)
__poj_jax_start__\otimes__poj_jax_end__ (a + 2)
__poj_jax_start__\otimes__poj_jax_end__ ...
__poj_jax_start__\otimes__poj_jax_end__ (b - 1)
__poj_jax_start__\otimes__poj_jax_end__ b.