A new Solar Eclipse is going to happen in Mars. Scientists from different parts of the world are travelling to Mars to watch and study this phenomenon. You just managed to calculate exactly the best point of Mars lands for your study of the eclipse, and want to land your flying saucer on that place. But, you notice that there are already other spacecrafts landed on near that area.
In the bird’s eye view, all the spacecrafts (including yours) are circles with constant radius R. Logically, you hate to land your spacecraft on the others (no intersection of areas is allowed, but touching the other crafts is acceptable), though, the other saucers did not obey this rule on their own landings (i.e. their circles might have positive-area intersections with each other). In order to land your own craft on Mars, you want to find the place which minimizes the distance between the center of your flying saucer and your already calculated best point (and obeys the no-intersection rule). That’s what you should do in this problem.