当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

3641:Pseudoprime numbers

题目描述

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

输入解释

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

输出解释

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

输入样例
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
输出样例
no
no
yes
no
yes
yes

该题目是Virtual Judge题目,来自 北京大学POJ

源链接: POJ-3641

最后修改于 2020-10-29T07:06:46+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
1000 65536