当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
no no yes no yes yes
时间上限 | 内存上限 |
1000 | 65536 |