当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

3595:Full Steiner Topologies

Special Judge 特殊评判
题目描述

A full Steiner topology for a given point set P = {p1, p2, …, pn} is an undirected tree T = (V, E) where V = {v1, v2, …, vn, vn+1, …, v2n−2} is the set of vertices, and E is the set of edges. The n distinctly labeled leaves of T, v1, v2, …, vn, correspond to p1, p2, …, pn, respectively; the remaining n − 2 vertices, vn+1, vn+2, …, v2n−2, called the Steiner vertices, are mutually indistinguishable and each have a degree of three. Figure 2 shows the only full Steiner topology for P = {p1, p2, p3}. Figure 3 shows all three different full Steiner topologies for P = {p1, p2, p3, p4}.

Figure 2: Full Steiner topology for P = {p1, p2, p3}

Figure 3: Full Steiner topologies for P = {p1, p2, p3, p4}

Given n, the cardinality of P, compute the number of distinct full Steiner topologies.

输入解释

The input contains multiple test cases. Each test case consists of a single integer n (3 ≤ n ≤ 107) on a separate line. The input ends where EOF is met.

输出解释

For each test case, print the answer on a separate line. You shall print the answer rounded to four significant digits. Let m · 10e be the scientific form of the rounded answer, you shall print “mEe”, giving all four significant digits of m and stripping any leading zeroes before e.

输入样例
3
30
300
3000
30000
300000
3000000
输出样例
1.000E0
8.687E36
5.677E697
1.462E10024
1.983E130306
4.215E1603145
7.937E19031556

该题目是Virtual Judge题目,来自 北京大学POJ

源链接: POJ-3595

最后修改于 2020-10-29T07:05:36+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
1000 131072