当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。
Everything is flat in Flatland. The planets are round but they are flat, that is, they are discs in a plane.
The centers of three planets in Flatland are given and their radii. Find the point in Flatland from which all three planets are visible at the same angle, that is, they appear to have the same size measured as angular diameter. Let's call such a point an isoobservation point. There can be at most two such points and we are interested in finding the one that gives the largest angular diameter of the planets.
Input consists of several cases, each case is presented at a single line. Each line has nine numbers, three for each disc. Each triple has x and y coordinates of the disc center and the radius r of that disc. The input is terminated by a line with nine zeros and this line should not be processed.
For each case of input, print the x and y coordinates of the isoobservation point as described above in the format shown in the sample; but if there is no such point, print No solution
10 10 1 30 30 1 50 10 1 0 30 1.0 30 0 1.0 40 40 1.0 10 30 1.0 31 0 1.0 42 43 1.0 10 42 1 62.8 62.8 1 52.5 -25.3 1 10 42 1.1 62.8 62.8 1.2 52.5 25.3 25 0 0 0 0 0 0 0 0 0
30.00 10.00 23.00 23.00 31.58 22.76 49.27 19.73 No solution
To simplify the problem you may assume that:
时间上限 | 内存上限 |
1000 | 65536 |