Two opposite vertices of the parallelepiped A with the edges parallel to the datume lines, have coordinates (0, 0, 0) and (u, v, w) correspondingly (0< u< 1000, 0< v< 1000, 0< w< 1000).
Each of the n points of the set S is defined by its coordinates (x(i), y(i), z(i)), 1 <= i <= n <= 50. No pair of points of the set S lies on the straight line parallel to some side of the parallelepiped A.
You are to find a parallelepiped G of the maximal volume such that all its sides are parallel to the edges of A, G completely lies in A (G and A may have common boundary points) and no point of S lies in G (but may lie on its side).