当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

2461:Magic Bitstrings

题目描述
A bitstring, whose length is one less than a prime, might be magic. 1001 is one such string. In order to see the magic in the string let us append a non-bit x to it, regard the new thingy as a cyclic string, and make this square matrix of bits
each bit   1001  
every 2nd bit   0110  
every 3rd bit   0110  
every 4th bit   1001  

This matrix has the same number of rows as the length of the original bitstring. The m-th row of the matrix has every m-th bit of the original string starting with the m-th bit. Because the enlarged thingy has prime length, the appended x never gets used.

If each row of the matrix is either the original bitstring or its complement, the original bitstring is magic.
输入解释
Each line of input (except last) contains a prime number p <= 100000. The last line contains 0 and this line should not be processed.
输出解释
For each prime number from the input produce one line of output containing the lexicographically smallest, non-constant magic bitstring of length p-1, if such a string exists, otherwise output Impossible.
输入样例
5
3
17
47
2
79
0
输出样例
0110
01
0010111001110100
0000100001101010001101100100111010100111101111
Impossible
001001100001011010000001001111001110101010100011000011011111101001011110011011

该题目是Virtual Judge题目,来自 北京大学POJ

源链接: POJ-2461

最后修改于 2020-10-29T06:33:05+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
1000 65536