当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

2417:Discrete Logging

题目描述
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
    BL == N (mod P)
输入解释
Read several lines of input, each containing P,B,N separated by a space.
输出解释
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
输入样例
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
输出样例
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
提示
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
   B(P-1) == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
   B(-m) == B(P-1-m) (mod P) .

该题目是Virtual Judge题目,来自 北京大学POJ

源链接: POJ-2417

最后修改于 2020-10-29T06:31:57+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
5000 65536