Let us consider an undirected graph G = < V,E >. Let us denote by N(v) the set of vertices connected to vertex v (i.e. the set of neighbours of v). Recall that the number of vertices connected to v is called the degree of this vertex and is denoted by deg v.
We will call graph G strange if it is connected and for its every vertex v the following conditions are satisfied:
1. deg v >= 2 (i.e. there are at least two vertices connected to v)
2. If deg v = 2 then the two neighbours of v are not connected by an edge
3. If degv > 2 then there is u ∈ N(v), such that the following is true:
(a) deg u = 2
(b) Any two different vertices w1,w2 ∈ N(v) \ {u} are connected, i.e. (w1,w2) ∈ E.
You are given some strange graph G. Find hamiltonian cycle in it, i.e. find such cycle that it goes through every vertex of G exactly once.