当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

2129:Invariant Polynomials

题目描述
Consider a real polynomial P (x, y) in two variables. It is called invariant with respect to the rotation
by an angle α if
P (x cos α - y sin α, x sin α + y cos α) = P (x, y)

for all real x and y.
Let's consider the real vector space formed by all polynomials in two variables of degree not greater than d invariant with respect to the rotation by 2π/n. Your task is to calculate the dimension of this vector space.
You might find useful the following remark: Any polynomial of degree not greater than d can be uniquely written in form
P (x, y) = Σi,j>=0,i+j<=daijxiyj

for some real coefficients aij .
输入解释
The input contains two positive integers d and n separated by one space. It is guaranteed that they are less than one thousand.
输出解释
Output a single integer M which is the dimension of the vector space described.
输入样例
2 2
输出样例
4

该题目是Virtual Judge题目,来自 北京大学POJ

源链接: POJ-2129

最后修改于 2020-10-29T06:24:07+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000 65536