There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, ..., N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads:
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.
For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.
1. Bead 2 is heavier than Bead 1.
2. Bead 4 is heavier than Bead 3.
3. Bead 5 is heavier than Bead 1.
4. Bead 4 is heavier than Bead 2.
From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.
Write a program to count the number of beads which cannot have the median weight.