当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

1941:The Sierpinski Fractal

题目描述
Consider a regular triangular area, divide it into four equal triangles of half height and remove the one in the middle. Apply the same operation recursively to each of the three remaining triangles. If we repeated this procedure infinite times, we'd obtain something with an area of zero. The fractal that evolves this way is called the Sierpinski Triangle. Although its topological dimension is 2, its Hausdorff-Besicovitch dimension is log(3)/log(2)~1.58, a fractional value (that's why it is called a fractal). By the way, the Hausdorff-Besicovitch dimension of the Norwegian coast is approximately 1.52, its topological dimension being 1.

For this problem, you are to outline the Sierpinski Triangle up to a certain recursion depth, using just ASCII characters. Since the drawing resolution is thus fixed, you'll need to grow the picture appropriately. Draw the smallest triangle (that is not divided any further) with two slashes, to backslashes and two underscores like this:
 /\

/__\

To see how to draw larger triangles, take a look at the sample output.
输入解释
The input contains several testcases. Each is specified by an integer n. Input is terminated by n=0. Otherwise 1<=n<=10 indicates the recursion depth.
输出解释
For each test case draw an outline of the Sierpinski Triangle with a side's total length of 2n characters. Align your output to the left, that is, print the bottom leftmost slash into the first column. The output must not contain any trailing blanks. Print an empty line after each test case.
输入样例
3
2
1
0
输出样例
       /\
      /__\
     /\  /\
    /__\/__\
   /\      /\
  /__\    /__\
 /\  /\  /\  /\
/__\/__\/__\/__\

   /\
  /__\
 /\  /\
/__\/__\

 /\
/__\
提示

The Sierpinski-Triangle up to recursion depth 7

该题目是Virtual Judge题目,来自 北京大学POJ

题目来源 Ulm Local 2002

源链接: POJ-1941

最后修改于 2020-10-29T06:18:28+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
1000 30000