当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

1670:Obstructed Rook Circuits

Special Judge 特殊评判
题目描述
A board is a rectangular array of squares such as on a chessboard, with possibly some squares blocked off. A rook tour of a board is a path that visits each empty square of the board exactly once, moving at each step to an empty adjacent square (North, South, East or West but not diagonally). A rook tour is a rook circuit if it starts and ends on the same square. In the figures below, let the + symbol be the rook, and the X symbol be an obstruction. The following are descriptions of each figure: (a) is a board with no rook circuit, (b) and (c) give distinct rook circuits of the same board and (d) gives the unique (up to direction) rook circuit of another board.

Write a program, which takes as input the description of a board and either finds a rook circuit or determines that there is no rook circuit.
输入解释
Input consists of a sequence of board descriptions and starting points. The first line of the input is
Nrows Ncols Nblocks StartX StartY
where Nrows is the number of rows in the rectangular array, Ncols is the number of columns in the rectangular array, Nblocks is the number of blocked off squares on the board and (StartX, StartY) is the position on the board where the path is to start (and end). StartX and StartY are 0 based (StartX ranges from 0 to Ncols - 1). Following the first line there are Nblocks lines giving the coordinates of the blocked off squares, one per line. The coordinates of these points are 0 based and are of the form X Y. The final line of each board description is a blank line.
The last line of the input is line of 5 zeroes.
输出解释
If there is no rook circuit for the corresponding board, the output is a line "NO SOLUTION" followed by a blank line. Otherwise, the output is a sequence of the letters N, S, E, W giving the moves from the starting point to traverse a rook circuit and return to the starting point. (N indicates moving to the previous row, S moving to the next row, E moving to the next column and W moving to the previous column.) If more than 40 moves are required, the moves will be output 40 to a line (except possibly for the last line). The move output is to be followed by a blank line.
Note that the same board may
have several rook circuits. Your program need only find any one (correct) rook circuit.
输入样例
4 4 2 0 0
1 2
3 0

4 4 0 2 2

4 4 0 0 0

4 4 2 1 2
0 3
2 2

8 8 0 0 0

0 0 0 0 0
输出样例
NO SOLUTION

NENWWWSESWSEEENW

EEESWWSEESWWWNNN

WNNESENESSSWWN

EEEEEEESWWWWWWSEEEEEESWWWWWWSEEEEEESWWWW
WWSEEEEEESWWWWWWWNNNNNNN
提示
Some Facts:
1. The Parity Principle. If we checker the squares of the array black and white (white if (x+y) is even, black if (x+y) is odd), each unit step in a rook circuit must go from a white square to a black square and vice versa.Thus any rook circuit must have the same number of white and black squares. Board (a) above has 8 white and 6 black unblocked squares so cannot have a rook circuit.
2. The Two Neighbor Principle. If a square has only two neighbors, then it must be visited via those neighbors. When a circuit gets to one of the neighbors, it must pass next to the two -neighbor square and then to the other neighbor. In board (d), the (0,0), (3, 0), (0, 2), (1,3), (2,3), (3,3) and (3,2) squares each have two neighbors. Thus the path is forced to include (1,0)-(0,0)-(0,1)-(0,2)-(1,2)-(1,3)-(2,3)-(3,3)-(3,2)-(3,1)-(3,0)-(2,0) in either order.
3. The Cul-de-Sac Principle. Never draw segments that leave a square with only one exit.
4. The Early Closing Principle. Never close a circuit until all squares have been visited.

该题目是Virtual Judge题目,来自 北京大学POJ

题目来源 Greater New York 2003

源链接: POJ-1670

最后修改于 2020-10-29T06:10:33+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
1000 10000