A common problem in parallel computing is establishing proper communication patterns so that processors do not deadlock while either waiting to receive messages from other processors, or waiting for the sending of messages to other processors to complete. That is, one processor will not complete sending a message until it is received by the destination processor. Likewise, a receive cannot complete until a message is actually sent.
There are two modes of communication: blocking and non-blocking. A blocking send will not complete until a matching receive is performed at the destination processor. Likewise, a blocking receive will not complete until the matching send is performed by the source processor. Non- blocking actions will ``return'' immediately (i.e., allow the program to continue), but will not actually complete until the matching action is performed at the target. The matching action of a send is a receive (either blocking or non-blocking), and similarly, the matching action of a receive is a send (either blocking or non-blocking).
At the start of each timestep, each processor that is not blocked starts to run its next instruction. Processors that execute blocking instructions become blocked. Messages can be received at the end of the timestep in which they are sent, but may need to wait several timesteps until the recipient performs a matching receive. If the recipient of a message is waiting to receive from the sender, then the message is received in the same timestep. Messages are received in the order that they are sent. If all of the actions for a particular blocking instruction complete at the end of the timestep, then the processor that ran the instruction will be unblocked before the next timestep.
A correct program will terminate only when all of its actions have completed. Pending non-blocking operations must be completed before a program can terminate.
Your program will take in a list of processors and actions (no more than 100 for each processor), and determine if each processor finishes its program. If a given processor does not finish, it must print out which other processors are preventing it from finishing.