Supporters for the professional soccer clubs participating in the K-League, formerly the Korea Professional Soccer League, hold orderly and organized cheering, as did the Red Devils, the official supporters for the Korean national soccer team during the 2002 Korea-Japan World Cup. After many games of this season have been played, the supporters may wonder whether the team S they are backing can still win the championship. In other words, can winners be assigned for the remaining games so that no team ends with more victories than S?(Two or more teams can win the championship jointly.)
You are given the current number of wins and defeats, wi and di, for every team i, 1<=i<=n, and the remaining number, ai,j, of games to be played between every pair of teams i and j, 1<=i,j<=n, where n is the number of teams. The teams are numbered 1,2,...,n. You are to find all teams that have a possibility of winning the championship. Every team has to play the same number games during the season. For simplicity, we assume that there are no draws, that is, every game has a winner and a loser.