You are given an array $a$ of length $n$. You must perform exactly $k$ times operations.
For each operation,
$\bullet$ First, you select two integers $l,r$ $($$1\leq l\leq r \leq n$$)$,
$\bullet$ Second, change $a$ to $b$, satisfy :
$\ \ \ \ \circ$ For each $i$ $($$1\le i< l$$)$ , $b_i=a_i$;
$\ \ \ \ \circ$ For each $i$ $($$l\le i< r$$)$ , $b_i=a_{i+1}$;
$\ \ \ \ \circ$ $b_r=a_l$
$\ \ \ \ \circ$ For each $i$ $($$r< i\le n$$)$ , $b_i=a_i$;
Find the lexicographically largest possible array after $k$ times operations.
Array $x$ is lexicographically greater than array $y$ if there exists an index $i$ $($ $1\leq i\leq n$ $)$ such that $x_i$ $>$ $y_i$ and for every $j (1\leq j \lt i) ,$ $ x_j=y_j$.