当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

6945:Huge Directed Graph

题目描述
There is a huge directed graph which contains $10^{18}$ nodes numbered from $1$ to $10^{18}$. There is a directed edge from $x$ to $y$ if and only if $x \lt y \leq 500 x$, and the length of the edge is $\ln \left\lfloor \left\lfloor \sqrt\frac{y}{x} \right\rfloor ^\frac{3}{2} \right\rfloor$, where $\ln$ is natural logarithm, and $\lfloor x \rfloor$ denotes the biggest integer that is not bigger than $x$.

You are given two integers $x$ and $y$ ($x \lt y$), and you need to find the **longest** path from $x$ to $y$. If the longest path is $d$, you just need to output $\lfloor e^d \rfloor$, where $e$ is the base of natural logarithm.
输入解释
The first line of input contains an integer $T\;(1\leq T \leq 200000)$, denoting the number of test cases.

In the next $T$ lines, each line contains two integers $x$ and $y$ ($1\leq x \lt y \leq 10^{18}$).
输出解释
For each test case, print one integer in one line, denoting $\lfloor e^d \rfloor$.
输入样例
4
2 8
3 27
4 64
1 12345678987654321
输出样例
2
5
8
1163817123840

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-6945

最后修改于 2021-10-23T19:10:46+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/262144K(Java/Others)