当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

6322:Problem D. Euler Function

题目描述
In number theory, Euler's totient function $\varphi(n)$ counts the positive integers up to a given integer $n$ that are relatively prime to $n$. It can be defined more formally as the number of integers $k$ in the range $1\leq k\leq n$ for which the greatest common divisor $\gcd(n, k)$ is equal to $1$.
For example, $\varphi(9) = 6$ because $1, 2, 4, 5, 7$ and $8$ are coprime with $9$. As another example, $\varphi(1) = 1$ since for $n = 1$ the only integer in the range from $1$ to $n$ is $1$ itself, and $\gcd(1, 1) = 1$.
A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than $1$ and itself. So obviously $1$ and all prime numbers are not composite number.
In this problem, given integer $k$, your task is to find the $k$-th smallest positive integer $n$, that $\varphi(n)$ is a composite number.
输入解释
The first line of the input contains an integer $T(1\leq T\leq100000)$, denoting the number of test cases.
In each test case, there is only one integer $k(1\leq k\leq 10^9)$.
输出解释
For each test case, print a single line containing an integer, denoting the answer.
输入样例
2
1
2
输出样例
5
7
来自杭电HDUOJ的附加信息
Recommend chendu

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-6322

最后修改于 2020-10-25T23:30:17+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 524288/524288K(Java/Others)