The ant Welly now dedicates himself to urban infrastructure. He came to the kingdom of numbers and solicited an audience with the king. He recounted how he had built a happy path in the kingdom of happiness. The king affirmed Welly’s talent and hoped that this talent can help him find the best infinite fraction path before the anniversary.
The kingdom has N cities numbered from 0 to N - 1 and you are given an array D[0 ... N - 1] of decimal digits (0 ≤ D[i] ≤ 9, D[i] is an integer). The destination of the only one-way road start from the i-th city is the city labelled ($i^2$ + 1)%N.
A path beginning from the i-th city would pass through the cities $u_1, u_2, u_3$, and so on consecutively. The path constructs a real number A[i], called the relevant fraction such that the integer part of it is equal to zero and its fractional part is an infinite decimal fraction with digits D[i], D[$u_1$], D[$u_2$], and so on.
The best infinite fraction path is the one with the largest relevant fraction