当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

6189:Law of Commutation

题目描述
As we all know, operation ''+'' complies with the commutative law. That is, if we arbitrarily select two integers $a$ and $b$, $a + b$ always equals to $b + a$. However, as for exponentiation, such law may be wrong. In this problem, let us consider a modular exponentiation. Give an integer $m = 2^n$ and an integer $a$, count the number of integers $b$ in the range of $[1,m]$ which satisfy the equation $a^b \equiv b^a$ (mod $m$).
输入解释
There are no more than $2500$ test cases.

Each test case contains two positive integers $n$ and a seperated by one space in a line.

For all test cases, you can assume that $n \leq 30, 1 \leq a \leq 10^9$.
输出解释
For each test case, output an integer denoting the number of $b$.
输入样例
2 3
2 2
输出样例
1
2
来自杭电HDUOJ的附加信息
Recommend liuyiding

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-6189

最后修改于 2020-10-25T23:29:09+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 32768/32768K(Java/Others)