当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

6061:RXD and functions

题目描述
RXD has a polynomial function $f(x)$, $f(x) = \sum_{i = 0}^{n}{c_ix^i}$
RXD has a transformation of function $Tr(f, a)$, it returns another function $g$, which has a property that $g(x) = f(x - a)$.
Given $a_1, a_2, a_3, \dots , a_m$, RXD generates a polynomial function sequence $g_i$, in which $g_0 = f$ and $g_i = Tr(g_{i - 1}, a_i)$
RXD wants you to find $g_m$, in the form of $\sum_{i = 0}^{m}{b_ix^i}$
You need to output $b_i$ module 998244353.
$n\leq 10^5$
输入解释
There are several test cases, please keep reading until EOF.
For each test case, the first line consists of 1 integer $n$, which means $\deg F$.
The next line consists of $n + 1$ intergers $c_i, 0 \leq c_i < 998244353$, which means the coefficient of the polynomial.
The next line contains an integer $m$, which means the length of $a$.
The next line contains $m$ integers, the i - th integer is $a_i$.
There are 11 test cases.
$0<=ai<998244353$
$\sum m\leq 10^5$
输出解释
For each test case, output an polynomial with degree n, which means the answer.
输入样例
2
0 0 1
1
1
输出样例
1 998244351 1 
提示
$(x - 1) ^ 2 = x^2 - 2x + 1$
来自杭电HDUOJ的附加信息
Recommend liuyiding

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-6061

最后修改于 2020-10-25T23:27:58+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
4000/2000MS(Java/Others) 524288/524288K(Java/Others)