Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.
Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: $a_{n+1}…a_{2n}$. Just like always, there are some restrictions on $a_{n+1}…a_{2n}$: for each number $a_i$, you must choose a number $b_k$ from {bi}, and it must satisfy $a_i$≤max{$a_j$-j│$b_k$≤j<i}, and any $b_k$ can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{$\sum_{n+1}^{2n}a_i$} modulo $10^9$+7 .
Now Steph finds it too hard to solve the problem, please help him.