当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

6038:Function

题目描述
You are given a permutation $a$ from $0$ to $n - 1$ and a permutation $b$ from $0$ to $m - 1$.

Define that the domain of function $f$ is the set of integers from $0$ to $n - 1$, and the range of it is the set of integers from $0$ to $m - 1$.

Please calculate the quantity of different functions $f$ satisfying that $\displaystyle f(i) = b_{f(a_i)}$ for each $i$ from $0$ to $n - 1$.

Two functions are different if and only if there exists at least one integer from $0$ to $n - 1$ mapped into different integers in these two functions.

The answer may be too large, so please output it in modulo $10^9 + 7$.
输入解释
The input contains multiple test cases.

For each case:

The first line contains two numbers $n,$ $m$. $(1 \leq n \leq 100000, 1 \leq m \leq 100000)$

The second line contains $n$ numbers, ranged from $0$ to $n - 1$, the $i$-th number of which represents $a_{i - 1}$.

The third line contains $m$ numbers, ranged from $0$ to $m - 1$, the $i$-th number of which represents $b_{i - 1}$.

It is guaranteed that $\sum{n} \leq 10^6,$ $\sum{m} \leq 10^6$.
输出解释
For each test case, output "Case #$x$: $y$" in one line (without quotes), where $x$ indicates the case number starting from $1$ and $y$ denotes the answer of corresponding case.
输入样例
3 2
1 0 2
0 1
3 4
2 0 1
0 2 3 1
输出样例
Case #1: 4
Case #2: 4
来自杭电HDUOJ的附加信息
Recommend liuyiding

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-6038

最后修改于 2020-10-25T23:27:46+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
4000/2000MS(Java/Others) 131072/131072K(Java/Others)