当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5976:Detachment

题目描述
In a highly developed alien society, the habitats are almost infinite dimensional space.
In the history of this planet,there is an old puzzle.
You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: $a_1, a_2$, … (x= $a_1+a_2$+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
1.Two different small line segments cannot be equal ( $a_i≠a_j$ when i≠j).
2.Make this multidimensional space size s as large as possible (s= $a_1*a_2$*...).Note that it allows to keep one dimension.That's to say, the number of ai can be only one.
Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
输入解释
The first line is an integer T,meaning the number of test cases.
Then T lines follow. Each line contains one integer x.
1≤T≤10^6, 1≤x≤10^9
输出解释
Maximum s you can get modulo 10^9+7. Note that we wants to be greatest product before modulo 10^9+7.
输入样例
1
4
输出样例
4
来自杭电HDUOJ的附加信息
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5976

最后修改于 2020-10-25T23:27:13+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
4000/2000MS(Java/Others) 65536/65536K(Java/Others)