Alice is planning her travel route in a beautiful valley. In this valley, there are $N$ lakes, and $M$ rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number ($a_1, a_2, ... , a_n$) for each lake. If the path she finds is $P_0 \rightarrow P_1 \rightarrow ... \rightarrow P_t$, the lucky number of this trip would be $a_{P_0} \quad XOR \quad a_{P_1} \quad XOR \quad... \quad XOR \quad a_{P_t}$. She want to make this number as large as possible. Can you help her?