当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5748:Bellovin

题目描述
Peter has a sequence $a_1,a_2,...,a_n$ and he define a function on the sequence -- $F(a_1,a_2,...,a_n)=(f_1,f_2,...,f_n)$, where $f_i$ is the length of the longest increasing subsequence ending with $a_i$.

Peter would like to find another sequence $b_1,b_2,...,b_n$ in such a manner that $F(a_1,a_2,...,a_n)$ equals to $F(b_1,b_2,...,b_n)$. Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.

The sequence $a_1, a_2, ..., a_n$ is lexicographically smaller than sequence $b_1, b_2, ..., b_n$, if there is such number $i$ from $1$ to $n$, that $a_k = b_k$ for $1 \le k < i$ and $a_i < b_i$.
输入解释
There are multiple test cases. The first line of input contains an integer $T$, indicating the number of test cases. For each test case:

The first contains an integer $n$ $(1 \le n \le 100000)$ -- the length of the sequence. The second line contains $n$ integers $a_1,a_2,...,a_n$ $(1 \le a_i \le 10^9)$.
输出解释
For each test case, output $n$ integers $b_1,b_2,...,b_n$ $(1 \le b_i \le 10^9)$ denoting the lexicographically smallest sequence.
输入样例
3
1
10
5
5 4 3 2 1
3
1 3 5
输出样例
1
1 1 1 1 1
1 2 3
来自杭电HDUOJ的附加信息
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

题目来源 BestCoder Round #84

源链接: HDU-5748

最后修改于 2020-10-25T23:25:20+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
6000/3000MS(Java/Others) 131072/131072K(Java/Others)