Alice and Bob are playing a stone game in a board of $n\times m$ cells.
In the begining, the stone is in the upperleft cell. And in each turn, they can move the stone one cell to the right or one cell down, or diagonally $k$ cells down to the right, which means if you are at $(x,y)$, then you could move into $(x+1,y)$, $(x,y+1)$ or $(x+k,y+k)$ at the next step. The player who can not move loses. They play in turns and Alice moves first.
Now given $n$, $m$ and $k$, could you tell me who is the winner?