当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5638:Toposort

题目描述
There is a directed acyclic graph with $n$ vertices and $m$ edges. You are allowed to delete exact $k$ edges in such way that the lexicographically minimal topological sort of the graph is minimum possible.
输入解释
There are multiple test cases. The first line of input contains an integer $T$ indicating the number of test cases. For each test case:

The first line contains three integers $n$, $m$ and $k$ $(1 \le n \le 100000, 0 \le k \le m \le 200000)$ -- the number of vertices, the number of edges and the number of edges to delete.

For the next $m$ lines, each line contains two integers $u_i$ and $v_i$, which means there is a directed edge from $u_i$ to $v_i$ $(1 \le u_i, v_i \le n)$.

You can assume the graph is always a dag. The sum of values of $n$ in all test cases doesn't exceed $10^6$. The sum of values of $m$ in all test cases doesn't exceed $2 \times 10^6$.
输出解释
For each test case, output an integer $S = (\displaystyle\sum_{i=1}^{n}{i\cdot p_i}) \text{ mod } (10^9 + 7)$, where $p_{1}, p_{2}, ..., p_{n}$ is the lexicographically minimal topological sort of the graph.
输入样例
3
4 2 0
1 2
1 3
4 5 1
2 1
3 1
4 1
2 3
2 4
4 4 2
1 2
2 3
3 4
1 4
输出样例
30
27
30
来自杭电HDUOJ的附加信息
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5638

最后修改于 2020-10-25T23:24:24+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
10000/5000MS(Java/Others) 131072/131072K(Java/Others)