当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5627:Clarke and MST

题目描述
Clarke is a patient with multiple personality disorder. One day he turned into a learner of graph theory.
He learned some algorithms of minimum spanning tree. Then he had a good idea, he wanted to find the maximum spanning tree with bit operation AND.
A spanning tree is composed by $n-1$ edges. Each two points of $n$ points can reach each other. The size of a spanning tree is generated by bit operation AND with values of $n-1$ edges.
Now he wants to figure out the maximum spanning tree.
输入解释
The first line contains an integer $T(1 \le T \le 5)$, the number of test cases.
For each test case, the first line contains two integers $n, m(2 \le n \le 300000, 1 \le m \le 300000)$, denoting the number of points and the number of edge respectively.
Then $m$ lines followed, each line contains three integers $x, y, w(1 \le x, y \le n, 0 \le w \le 10^9)$, denoting an edge between $x, y$ with value $w$.
The number of test case with $n, m > 100000$ will not exceed 1.
输出解释
For each test case, print a line contained an integer represented the answer. If there is no any spanning tree, print 0.
输入样例
1
4 5
1 2 5
1 3 3
1 4 2
2 3 1
3 4 7
输出样例
1
来自杭电HDUOJ的附加信息
Recommend hujie

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5627

最后修改于 2020-10-25T23:24:19+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/65536K(Java/Others)