当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5584:LCM Walk

题目描述
A frog has just learned some number theory, and can't wait to show his ability to his girlfriend.

Now the frog is sitting on a grid map of infinite rows and columns. Rows are numbered $1, 2, \cdots$ from the bottom, so are the columns. At first the frog is sitting at grid $(s_x, s_y)$, and begins his journey.

To show his girlfriend his talents in math, he uses a special way of jump. If currently the frog is at the grid $(x, y)$, first of all, he will find the minimum $z$ that can be divided by both $x$ and $y$, and jump exactly $z$ steps to the up, or to the right. So the next possible grid will be $(x + z, y)$, or $(x, y + z)$.

After a finite number of steps (perhaps zero), he finally finishes at grid $(e_x, e_y)$. However, he is too tired and he forgets the position of his starting grid!

It will be too stupid to check each grid one by one, so please tell the frog the number of possible starting grids that can reach $(e_x, e_y)$!
输入解释
First line contains an integer $T$, which indicates the number of test cases.

Every test case contains two integers $e_x$ and $e_y$, which is the destination grid.

$\cdot$ $1 \leq T \leq 1000$.
$\cdot$ $1 \leq e_x, e_y \leq 10^9$.
输出解释
For every test case, you should output "Case #x: y", where $x$ indicates the case number and counts from $1$ and $y$ is the number of possible starting grids.
输入样例
3
6 10
6 8
2 8
输出样例
Case #1: 1
Case #2: 2
Case #3: 3
来自杭电HDUOJ的附加信息
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5584

最后修改于 2020-10-25T23:23:58+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/65536K(Java/Others)