当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5495:LCS

题目描述
You are given two sequence $\{a_1, a_2, ..., a_n\}$ and $\{b_1,b_2, ... ,b_n\}$. Both sequences are permutation of $\{1,2,...,n\}$. You are going to find another permutation $\{p_1,p_2,...,p_n\}$ such that the length of LCS (longest common subsequence) of $\{a_{p_1},a_{p_2},...,a_{p_n}\}$ and $\{b_{p_1},b_{p_2},...,b_{p_n}\}$ is maximum.
输入解释
There are multiple test cases. The first line of input contains an integer $T$, indicating the number of test cases. For each test case:

The first line contains an integer $n (1 \le n \le 10^5)$ - the length of the permutation. The second line contains $n$ integers $a_1,a_2,...,a_n$. The third line contains $n$ integers $b_1,b_2,...,b_n$.

The sum of $n$ in the test cases will not exceed $2 \times 10^6$.
输出解释
For each test case, output the maximum length of LCS.
输入样例
2
3
1 2 3
3 2 1
6
1 5 3 2 6 4
3 6 2 4 5 1
输出样例
2
4
来自杭电HDUOJ的附加信息
Recommend hujie

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5495

最后修改于 2020-10-25T23:23:10+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
6000/3000MS(Java/Others) 65536/65536K(Java/Others)