当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5481:Desiderium

题目描述
There is a set of intervals, the size of this set is $n$.

If we select a subset of this set with equal probability, how many the expected length of intervals' union of this subset is?

We assume that the length of empty set's union is 0, and we want the answer multiply $2^n$ modulo $10^9 + 7$.
输入解释
The first line of the input is a integer $T$, meaning that there are $T$ test cases.

Every test cases begin with a integer $n$ ,which is size of set.

Then $n$ lines follow, each contain two integers $l , r$ describing a interval of $[l , r]$.

$1 \leq n \leq 100,000$.

$-1,000,000,000 \leq l \leq r \leq 1,000,000,000$.
输出解释
For every test case output the answer multiply $2^n$ modulo $10^9 + 7$.
输入样例
2
1
0 1
2
0 2
1 3
输出样例
1
7

提示
For the second sample, the excepted length is $\frac{0+2+2+3}{4}=\frac{7}{4}$.
来自杭电HDUOJ的附加信息
Recommend hujie

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5481

最后修改于 2020-10-25T23:23:02+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
4000/2000MS(Java/Others) 65536/65536K(Java/Others)