当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5476:Explore Track of Point

题目描述
In Geometry, the problem of track is very interesting. Because in some cases, the track of point may be beautiful curve. For example, in polar Coordinate system, $\rho = \cos 3\theta$ is like rose, $\rho = 1 - \sin \theta$ is a Cardioid, and so on. Today, there is a simple problem about it which you need to solve.

Give you a triangle $\Delta ABC$ and AB = AC. M is the midpoint of BC. Point P is in $\Delta ABC$ and makes $min\{\angle MPB + \angle APC, \angle MPC + \angle APB\}$ maximum. The track of P is $\Gamma$. Would you mind calculating the length of $\Gamma$?

Given the coordinate of A, B, C, please output the length of $\Gamma$.
输入解释
There are T ($1 \leq T \leq 10^4$) test cases. For each case, one line includes six integers the coordinate of A, B, C in order. It is guaranteed that AB = AC and three points are not collinear. All coordinates do not exceed $10^4$ by absolute value.
输出解释
For each case, first please output "Case #k: ", k is the number of test case. See sample output for more detail. Then, please output the length of $\Gamma$ with exactly 4 digits after the decimal point.
输入样例
1
0 1 -1 0 1 0
输出样例
Case #1: 3.2214
来自杭电HDUOJ的附加信息
Recommend hujie

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5476

最后修改于 2020-10-25T23:22:59+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/65536K(Java/Others)