当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5339:Untitled

题目描述
There is an integer $a$ and $n$ integers $b_1, \ldots, b_n$. After selecting some numbers from $b_1, \ldots, b_n$ in any order, say $c_1, \ldots, c_r$, we want to make sure that $a \ mod \ c_1 \ mod \ c_2 \ mod \ldots \ mod \ c_r = 0$ (i.e., $a$ will become the remainder divided by $c_i$ each time, and at the end, we want $a$ to become $0$). Please determine the minimum value of $r$. If the goal cannot be achieved, print $-1$ instead.
输入解释
The first line contains one integer $T \leq 5$, which represents the number of testcases.

For each testcase, there are two lines:

1. The first line contains two integers $n$ and $a$ ($1 \leq n \leq 20, 1 \leq a \leq 10^6$).

2. The second line contains $n$ integers $b_1, \ldots, b_n$ ($\forall 1\leq i \leq n, 1 \leq b_i \leq 10^6$).
输出解释
Print $T$ answers in $T$ lines.
输入样例
2
2 9
2 7
2 9
6 7
输出样例
2
-1
来自杭电HDUOJ的附加信息
Recommend hujie

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5339

最后修改于 2020-10-25T23:21:50+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/65536K(Java/Others)