当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5328:Problem Killer

题目描述
You are a "Problem Killer", you want to solve many problems.
Now you have $n$ problems, the $i$-th problem's difficulty is represented by an integer $a_i$ ($1 \le a_i \le 10^{9}$).
For some strange reason, you must choose some integer $l$ and $r$ ($1 \le l \le r \le n$), and solve the problems between the $l$-th and the $r$-th, and these problems' difficulties must form an AP (Arithmetic Progression) or a GP (Geometric Progression).
So how many problems can you solve at most?

You can find the definitions of AP and GP by the following links:
https://en.wikipedia.org/wiki/Arithmetic_progression
https://en.wikipedia.org/wiki/Geometric_progression
输入解释
The first line contains a single integer $T$, indicating the number of cases.
For each test case, the first line contains a single integer $n$, the second line contains $n$ integers $a_1, a_2, \cdots, a_n$.

$T \le 10^4, \sum n \le 10^6$
输出解释
For each test case, output one line with a single integer, representing the answer.
输入样例
2
5
1 2 3 4 6
10
1 1 1 1 1 1 2 3 4 5
输出样例
4
6
来自杭电HDUOJ的附加信息
Author XJZX
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5328

最后修改于 2020-10-25T23:21:45+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/65536K(Java/Others)