当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

5323:Solve this interesting problem

题目描述
Have you learned something about segment tree? If not, don’t worry, I will explain it for you.
Segment Tree is a kind of binary tree, it can be defined as this:
- For each node u in Segment Tree, u has two values: $L_u$ and $R_u$.
- If $L_u = R_u$, u is a leaf node.
- If $L_u \neq R_u$, u has two children x and y,with $L_x = L_u$,$R_x = \lfloor \frac{L_u + R_u }{2}\rfloor$,$L_y = \lfloor \frac{L_u + R_u }{2}\rfloor + 1$,$R_y = R_u$.
Here is an example of segment tree to do range query of sum.



Given two integers L and R, Your task is to find the minimum non-negative n satisfy that: A Segment Tree with root node's value $L_{root} = 0$ and $R_{root} = n$ contains a node u with $L_u = L$ and $R_u = R$.
输入解释
The input consists of several test cases.
Each test case contains two integers L and R, as described above.
$0 \leq L \leq R \leq 10^9$
$\frac{L}{R-L+1} \leq 2015$
输出解释
For each test, output one line contains one integer. If there is no such n, just output -1.
输入样例
6 7
10 13
10 11
输出样例
7
-1
12
来自杭电HDUOJ的附加信息
Author ZSTU
Recommend wange2014

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-5323

最后修改于 2020-10-25T23:21:41+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 32768/32768K(Java/Others)