Nim is a mathematical game of strategy in which two players take turns removing objects from distinct heaps. On each turn, a player must remove at least one object, and may remove any number of objects provided they all come from the same heap.
---Wikipedia
Today, Nim takes revenge on you, again. As you know, the rule of Nim game is rather unfair, only the nim-sum (⊕) of the sizes of the heaps is zero will the first player lose. To ensure the fairness of the game, the second player has a chance to move some (can be zero) heaps before the game starts, but he has to move one heap entirely, i.e. not partially. Of course, he can’t move all heaps out, at least one heap should be left for playing. Will the second player have the chance to win this time?