当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

4993:Revenge of ex-Euclid

题目描述
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, which computes, besides the greatest common divisor of integers a and b, the coefficients of Bézout's identity, that is integers x and y such that ax + by = gcd(a, b).
---Wikipedia

Today, ex-Euclid takes revenge on you. You need to calculate how many distinct positive pairs of (x, y) such as ax + by = c for given a, b and c.
输入解释
The first line contains a single integer T, indicating the number of test cases.

Each test case only contains three integers a, b and c.

[Technical Specification]
1. 1 <= T <= 100
2. 1 <= a, b, c <= 1 000 000
输出解释
For each test case, output the number of valid pairs.
输入样例
2
1 2 3
1 1 4
输出样例
1
3
来自杭电HDUOJ的附加信息
Recommend heyang

该题目是Virtual Judge题目,来自 杭电HDUOJ

题目来源 BestCoder Round #9

源链接: HDU-4993

最后修改于 2020-10-25T23:18:46+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 32768/32768K(Java/Others)