当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

4954:Permanent

题目描述
Teacher Mai has solved the #P complete in polynomial time recently.

So he gives this task to you. You are given a matrix of n rows and n columns, you should calculate the permanent of this.

But this matrix is special, nearly all the elements are 1. Only the cells on the main diagonal are modified.

You are given n integers ai. You should calculate permanents of m matrices. The size of i-th matrix is n+i-1.

In i-th matrix,


The number can be very large, just output the number modulo 998244353.

If you don't know what is the permanent of a matrix, please click http://en.wikipedia.org/wiki/Permanent or http://baike.baidu.com/view/8212164.htm
输入解释
There are multiple test cases, terminated by a line "0 0".

For each test case, the first line contains two integers n,m(1<=n,m<=10^5).

The following one line contains n integers ai,(0<=ai<=10^6).
输出解释
For each test case, first output one line "Case #k:", where k is the case number counting from 1.

The following k lines contains a integer, indicating the permanent of the i-th matrix.
输入样例
3 2
2 3 3
0 0
输出样例
Case #1:
28
46
来自杭电HDUOJ的附加信息
Author xudyh
Recommend

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-4954

最后修改于 2020-10-25T23:18:23+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
14000/7000MS(Java/Others) 65536/65536K(Java/Others)