当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

4747:Mex

题目描述
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.

Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
输入解释
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
输出解释
For each test case, output one line containing a integer denoting the answer.
输入样例
3
0 1 3
5
1 0 2 0 1
0
输出样例
5
24
提示
For the first test case:
mex(1,1)=1, mex(1,2)=2, mex(1,3)=2, mex(2,2)=0, mex(2,3)=0,mex(3,3)=0.
 1 + 2 + 2 + 0 +0 +0 = 5.
来自杭电HDUOJ的附加信息
Recommend liuyiding

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-4747

最后修改于 2020-10-25T23:16:25+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
15000/5000MS(Java/Others) 65535/65535K(Java/Others)