当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

4602:Partition

题目描述
Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
  4=1+1+1+1
  4=1+1+2
  4=1+2+1
  4=2+1+1
  4=1+3
  4=2+2
  4=3+1
  4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
输入解释
The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
Each test case contains two integers n and k(1≤n,k≤109).
输出解释
Output the required answer modulo 109+7 for each test case, one per line.
输入样例
2
4 2
5 5
输出样例
5
1
来自杭电HDUOJ的附加信息
Recommend liuyiding

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-4602

最后修改于 2020-10-25T23:15:03+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 32768/32768K(Java/Others)