You have a piece of iron wire with length of n unit. Now you decide to cut it into several ordered pieces and fold each piece into a triangle satisfying:
*All triangles are integral.
* All triangles are pairwise similar.
You should count the number of different approaches to form triangles. Two approaches are considered different if either of the following conditions is satisfied:
*They produce different numbers of triangles.
* There exists i that the ith (again, pieces are ordered) triangle in one approaches is not congruent to ith triangle in another plan.
The following information can be helpful in understanding this problem.
* A triangle is integral when all sides are integer.
*Two triangles are congruent when all corresponding sides and interior angles are equal.
* Two triangles are similar if they have the same shape, but can be different sizes.
*For n = 9 you have 6 different approaches to do so, namely
(1, 1, 1) (1, 1, 1) (1, 1, 1)
(1, 1, 1) (2, 2, 2)
(2, 2, 2) (1, 1, 1)
(1, 4, 4)
(2, 3, 4)
(3, 3, 3)
where (a, b, c) represents a triangle with three sides a, b, c.