当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

4307:Matrix

题目描述
Let A be a 1*N matrix, and each element of A is either 0 or 1. You are to find such A that maximize D=(A*B-C)*AT, where B is a given N*N matrix whose elements are non-negative, C is a given 1*N matrix whose elements are also non-negative, and AT is the transposition of A (i.e. a N*1 matrix).
输入解释
The first line contains the number of test cases T, followed by T test cases.
For each case, the first line contains an integer N (1<=N<=1000).
The next N lines, each of which contains N integers, illustrating the matrix B. The jth integer on the ith line is B[i][j].
Then one line followed, containing N integers, describing the matrix C, the ith one for C[i].
You may assume that sum{B[i][j]} < 2^31, and sum{C[i]} < 2^31.
输出解释
For each case, output the the maximum D you may get.
输入样例
1
3
1 2 1
3 1 0
1 2 3
2 3 7
输出样例
2
提示
For sample, A=[1, 1, 0] or A=[1, 1, 1] would get the maximum D.
来自杭电HDUOJ的附加信息
Author BUPT
Recommend zhuyuanchen520

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-4307

最后修改于 2020-10-25T23:12:17+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
4000/2000MS(Java/Others) 65536/65536K(Java/Others)