You are given a list of N non-negative integers a(1), a(2), ... , a(N). You replace the given list by a new list: the k-th entry of the new list is the absolute value of a(k) - a(k+1), wrapping around at the end of the list (the k-th entry of the new list is the absolute value of a(N) - a(1)). How many iterations of this replacement are needed to arrive at a list in which every entry is the same integer?
For example, let N = 4 and start with the list (0 2 5 11). The successive iterations are:
2 3 6 11
1 3 5 9
2 2 4 8
0 2 4 6
2 2 2 6
0 0 4 4
0 4 0 4
4 4 4 4
Thus, 8 iterations are needed in this example.