当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

3977:Evil teacher

题目描述
In the math class, the evil teacher gave you one unprecedented problem!

Here f(n) is the n-th fibonacci number (n >= 0)! Where f(0) = f(1) = 1 and for any n > 1, f(n) = f(n - 1) + f(n - 2). For example, f(2) = 2, f(3) = 3, f(4) = 5 ...

The teacher used to let you calculate f(n) mod p where n <= 10^18 and p <= 10^9, however , as an ACMER, you may just kill it in seconds! The evil teacher is mad about this. Now he let you find the smallest integer m (m > 0) such that for ANY non-negative integer n ,f(n) = f(n + m) (mod p) . For example, if p = 2, then we could find know m = 3 , f(0) = f(3) = 1(mod 2), f(1) = f(4) (mod 2) ....

Now the evil teacher will only give you one integer p( p <= 2* 10^9), will you tell him the smallest m you can find ?
输入解释
The first line is one integer T indicates the number of the test cases. (T <=20)

Then for every case, only one integer P . (1 <= P <= 2 * 10^9, the max prime factor for P is no larger than 10^6)
输出解释
Output one line.

First output “Case #idx: ”, here idx is the case number count from 1.Then output the smallest m you can find. You can assume that the m is always smaller than 2^64 .
输入样例
5 
11 
19 
61 
17 
67890
输出样例
Case #1: 10 
Case #2: 18 
Case #3: 60 
Case #4: 36 
Case #5: 4440
来自杭电HDUOJ的附加信息
Author AekdyCoin
Recommend

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-3977

最后修改于 2020-10-25T23:08:56+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 32768/32768K(Java/Others)