GG and MM like playing a game since they are children. At the beginning of game, there are two piles of stones. MM chooses a pile of stones first, which has x stones, and then she can choose a positive number k and remove k*x stones out from the other pile of stones, which has y stones (I think all of you know that y>=k*x - -!). Then it comes the turn of GG, followed the rules above-mentioned as well. When someone can't remove any stone, then he/she loses the game, and this game is finished.
Many years later, GG and MM find this game is too simple, so they decided to play N games at one time for fun. MM plays first, as the same, and the one on his/her turn must play every unfinished game. Rules to remove are as same as above, and if someone cannot remove any stone (i.e., loses the last ending game), then he/she loses. Of course we can assume GG and MM are clever enough, and GG will not lose intentionally, O(∩_∩)O~